Page 201 / 296 Scroll up to view Page 196 - 200
Reference Manual for the ProSafe Wireless 802.11g
Firewall/Print Server Model FWG114P v2
Networks, Routing, and Firewall Basics
B-7
201-10301-02, May 2005
NETGEAR strongly recommends that you configure all hosts on a LAN segment to use the same
netmask for the following reasons:
So that hosts recognize local IP broadcast packets.
When a device broadcasts to its segment neighbors, it uses a destination address of the local
network address with all ones for the host address. In order for this scheme to work, all devices
on the segment must agree on which bits comprise the host address.
So that a local router or bridge recognizes which addresses are local and which are remote.
Private IP Addresses
If your local network is isolated from the Internet (for example, when using NAT), you can assign
any IP addresses to the hosts without problems. However, the IANA has reserved the following
three blocks of IP addresses specifically for private networks:
10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255
NETGEAR recommends that you choose your private network number from this range. The
DHCP server of the FWG114P v2 Wireless Firewall/Print Server is preconfigured to automatically
assign private addresses.
Regardless of your particular situation, do not create an arbitrary IP address; always follow the
guidelines explained here. For more information about address assignment, refer to RFC 1597,
Address Allocation for Private Internets,
and RFC 1466,
Guidelines for Management of IP
Address Space
. The Internet Engineering Task Force (IETF) publishes RFCs on its Web site at
www.ietf.org
.
Single IP Address Operation Using NAT
In the past, if multiple computers on a LAN needed to access the Internet simultaneously, you had
to obtain a range of IP addresses from the ISP. This type of Internet account is more costly than a
single-address account typically used by a single user with a modem, rather than a router. The
FWG114P v2 Wireless Firewall/Print Server employs an address-sharing method called Network
Address Translation (NAT). This method allows several networked computers to share an Internet
account using only a single IP address, which may be statically or dynamically assigned by your
ISP.
Page 202 / 296
Reference Manual for the ProSafe Wireless 802.11g
Firewall/Print Server Model FWG114P v2
B-8
Networks, Routing, and Firewall Basics
201-10301-02, May 2005
The router accomplishes this address sharing by translating the internal LAN IP addresses to a
single address that is globally unique on the Internet. The internal LAN IP addresses can be either
private addresses or registered addresses. For more information about IP address translation, refer
to RFC 1631,
The IP Network Address Translator (NAT)
.
The following figure illustrates a single IP address operation.
Figure 11-3:
Single IP Address Operation Using NAT
This scheme offers the additional benefit of firewall-like protection because the internal LAN
addresses are
not
available to the Internet through the translated connection. All incoming
inquiries are filtered out by the router. This filtering can prevent intruders from probing your
system. However, using port forwarding, you can allow one PC (for example, a Web server) on
your local network to be accessible to outside users.
192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.1
172.21.15.105
Private IP addresses
assigned by user
Internet
IP addresses
assigned by ISP
Page 203 / 296
Reference Manual for the ProSafe Wireless 802.11g
Firewall/Print Server Model FWG114P v2
Networks, Routing, and Firewall Basics
B-9
201-10301-02, May 2005
MAC Addresses and Address Resolution Protocol
An IP address alone cannot be used to deliver data from one LAN device to another. To send data
between LAN devices, you must convert the IP address of the destination device to its media
access control (MAC) address. Each device on an Ethernet network has a unique MAC address,
which is a 48-bit number assigned to each device by the manufacturer. The technique that
associates the IP address with a MAC address is known as address resolution. Internet Protocol
uses the Address Resolution Protocol (ARP) to resolve MAC addresses.
If a device sends data to another station on the network and the destination MAC address is not yet
recorded, ARP is used. An ARP request is broadcast onto the network. All stations on the network
receive and read the request. The destination IP address for the chosen station is included as part of
the message so that only the station with this IP address responds to the ARP request. All other
stations discard the request.
Related Documents
The station with the correct IP address responds with its own MAC address directly to the sending
device. The receiving station provides the transmitting station with the required destination MAC
address. The IP address data and MAC address data for each station are held in an ARP table. The
next time data is sent, the address can be obtained from the address information in the table.
For more information about address assignment, refer to the IETF documents RFC 1597,
Address
Allocation for Private Internets,
and RFC 1466,
Guidelines for Management of IP Address Space
.
For more information about IP address translation, refer to RFC 1631,
The IP Network Address
Translator (NAT)
.
Domain Name Server
Many of the resources on the Internet can be addressed by simple descriptive names, such as
www.NETGEAR.com
. This addressing is very helpful at the application level, but the descriptive
name must be translated to an IP address in order for a user to actually contact the resource. Just as
a telephone directory maps names to phone numbers, or as an ARP table maps IP addresses to
MAC addresses, a domain name system (DNS) server maps descriptive names of network
resources to IP addresses.
Page 204 / 296
Reference Manual for the ProSafe Wireless 802.11g
Firewall/Print Server Model FWG114P v2
B-10
Networks, Routing, and Firewall Basics
201-10301-02, May 2005
When a PC accesses a resource by its descriptive name, it first contacts a DNS server to obtain the
IP address of the resource. The PC sends the desired message using the IP address. Many large
organizations, such as ISPs, maintain their own DNS servers and allow their customers to use the
servers to look up addresses.
IP Configuration by DHCP
When an IP-based local area network is installed, each PC must be configured with an IP address.
If the computers need to access the Internet, they should also be configured with a gateway address
and one or more DNS server addresses. As an alternative to manual configuration, there is a
method by which each PC on the network can automatically obtain this configuration information.
A device on the network may act as a Dynamic Host Configuration Protocol (DHCP) server. The
DHCP server stores a list or pool of IP addresses, along with other information (such as gateway
and DNS addresses) that it may assign to the other devices on the network. The FWG114P v2
Wireless Firewall/Print Server has the capacity to act as a DHCP server.
The FWG114P v2 Wireless Firewall/Print Server also functions as a DHCP client when
connecting to the ISP. The firewall can automatically obtain an IP address, subnet mask, DNS
server addresses, and a gateway address if the ISP provides this information by DHCP.
Internet Security and Firewalls
When your LAN connects to the Internet through a router, an opportunity is created for outsiders
to access or disrupt your network. A NAT router provides some protection because by the very
nature of the Network Address Translation (NAT) process, the network behind the NAT router is
shielded from access by outsiders on the Internet. However, there are methods by which a
determined hacker can possibly obtain information about your network or at the least can disrupt
your Internet access. A greater degree of protection is provided by a firewall router.
Page 205 / 296
Reference Manual for the ProSafe Wireless 802.11g
Firewall/Print Server Model FWG114P v2
Networks, Routing, and Firewall Basics
B-11
201-10301-02, May 2005
What is a Firewall?
A firewall is a device that protects one network from another, while allowing communication
between the two. A firewall incorporates the functions of the NAT router, while adding features for
dealing with a hacker intrusion or attack. Several known types of intrusion or attack can be
recognized when they occur. When an incident is detected, the firewall can log details of the
attempt, and can optionally send e-mail to an administrator notifying them of the incident. Using
information from the log, the administrator can take action with the ISP of the hacker. In some
types of intrusions, the firewall can fend off the hacker by discarding all further packets from the
hacker’s IP address for a period of time.
Stateful Packet Inspection
Unlike simple Internet sharing routers, a firewall uses a process called stateful packet inspection to
ensure secure firewall filtering to protect your network from attacks and intrusions. Since
user-level applications, such as FTP and Web browsers can create complex patterns of network
traffic, it is necessary for the firewall to analyze groups of network connection "states." Using
stateful packet inspection, an incoming packet is intercepted at the network layer and then
analyzed for state-related information associated with all network connections. A central cache
within the firewall keeps track of the state information associated with all network connections.
All traffic passing through the firewall is analyzed against the state of these connections in order to
determine whether or not it will be allowed to pass through or be rejected.
Denial of Service Attack
A hacker may be able to prevent your network from operating or communicating by launching a
Denial of Service (DoS) attack. The method used for, such an attack can be as simple as merely
flooding your site with more requests than it can handle. A more sophisticated attack may attempt
to exploit some weakness in the operating system used by your router or gateway. Some operating
systems can be disrupted by simply sending a packet with incorrect length information.
Ethernet Cabling
Although Ethernet networks originally used thick or thin coaxial cable, most installations currently
use unshielded twisted pair (UTP) cabling. The UTP cable contains eight conductors, arranged in
four twisted pairs, and terminated with an RJ45 type connector. A normal straight-through UTP
Ethernet cable follows the EIA568B standard wiring as described below in
Table B-1

Rate

4 / 5 based on 1 vote.

Bookmark Our Site

Press Ctrl + D to add this site to your favorites!

Share
Top