Page 151 / 359 Scroll up to view Page 146 - 150
Chapter 8 Quality of Service (QoS)
eircom F1000 Modem User’s Guide
151
If there are no tokens in the bucket, the Device stops transmitting until enough tokens are
generated.
If not enough tokens are available, the Device treats the packet in either one of the following
ways:
In traffic shaping:
Holds it in the queue until enough tokens are available in the bucket.
In traffic policing:
Drops it.
Transmits it but adds a DSCP mark. The Device may drop these marked packets if the network
is overloaded.
Configure the bucket size to be equal to or less than the amount of the bandwidth that the interface
can support. It does not help if you set it to a bucket size over the interface’s capability. The smaller
the bucket size, the lower the data transmission rate and that may cause outgoing packets to be
dropped. A larger transmission rate requires a big bucket size. For example, use a bucket size of 10
kbytes to get the transmission rate up to 10 Mbps.
Single Rate Three Color Marker
The Single Rate Three Color Marker (srTCM, defined in RFC 2697) is a type of traffic policing that
identifies packets by comparing them to one user-defined rate, the Committed Information Rate
(CIR), and two burst sizes: the Committed Burst Size (CBS) and Excess Burst Size (EBS).
The srTCM evaluates incoming packets and marks them with one of three colors which refer to
packet loss priority levels. High packet loss priority level is referred to as red, medium is referred to
as yellow and low is referred to as green.
The srTCM is based on the token bucket filter and has two token buckets (CBS and EBS). Tokens
are generated and added into the bucket at a constant rate, called Committed Information Rate
(CIR). When the first bucket (CBS) is full, new tokens overflow into the second bucket (EBS).
All packets are evaluated against the CBS. If a packet does not exceed the CBS it is marked green.
Otherwise it is evaluated against the EBS. If it is below the EBS then it is marked yellow. If it
exceeds the EBS then it is marked red.
The following shows how tokens work with incoming packets in srTCM:
A packet arrives. The packet is marked green and can be transmitted if the number of tokens in
the CBS bucket is equal to or greater than the size of the packet (in bytes).
After a packet is transmitted, a number of tokens corresponding to the packet size is removed
from the CBS bucket.
If there are not enough tokens in the CBS bucket, the Device checks the EBS bucket. The packet
is marked yellow if there are sufficient tokens in the EBS bucket. Otherwise, the packet is marked
red. No tokens are removed if the packet is dropped.
Two Rate Three Color Marker
The Two Rate Three Color Marker (trTCM, defined in RFC 2698) is a type of traffic policing that
identifies packets by comparing them to two user-defined rates: the Committed Information Rate
(CIR) and the Peak Information Rate (PIR). The CIR specifies the average rate at which packets are
admitted to the network. The PIR is greater than or equal to the CIR. CIR and PIR values are based
Page 152 / 359
Chapter 8 Quality of Service (QoS)
eircom F1000 Modem User’s Guide
152
on the guaranteed and maximum bandwidth respectively as negotiated between a service provider
and client.
The trTCM evaluates incoming packets and marks them with one of three colors which refer to
packet loss priority levels. High packet loss priority level is referred to as red, medium is referred to
as yellow and low is referred to as green.
The trTCM is based on the token bucket filter and has two token buckets (Committed Burst Size
(CBS) and Peak Burst Size (PBS)). Tokens are generated and added into the two buckets at the CIR
and PIR respectively.
All packets are evaluated against the PIR. If a packet exceeds the PIR it is marked red. Otherwise it
is evaluated against the CIR. If it exceeds the CIR then it is marked yellow. Finally, if it is below the
CIR then it is marked green.
The following shows how tokens work with incoming packets in trTCM:
A packet arrives. If the number of tokens in the PBS bucket is less than the size of the packet (in
bytes), the packet is marked red and may be dropped regardless of the CBS bucket. No tokens
are removed if the packet is dropped.
If the PBS bucket has enough tokens, the Device checks the CBS bucket. The packet is marked
green and can be transmitted if the number of tokens in the CBS bucket is equal to or greater
than the size of the packet (in bytes). Otherwise, the packet is marked yellow.
Page 153 / 359
eircom F1000 Modem User’s Guide
153
C
HAPTER
9
Network Address Translation (NAT)
9.1
Overview
This chapter discusses how to configure NAT on the Device. NAT (Network Address Translation -
NAT, RFC 1631) is the translation of the IP address of a host in a packet, for example, the source
address of an outgoing packet, used within one network to a different IP address known within
another network.
9.1.1
What You Can Do in this Chapter
Use the
Port Forwarding
screen to configure forward incoming service requests to the server(s)
on your local network (
Section 9.2 on page 154
).
Use the
Applications
screen to forward incoming service requests to the server(s) on your local
network (
Section 9.3 on page 157
).
Use the
Port Triggering
screen to add and configure the Device’s trigger port settings (
Section
9.4 on page 159
).
Use the
DMZ
screen to configure a default server (
Section 9.5 on page 161
).
Use the
ALG
screen to enable and disable the NAT and SIP (VoIP) ALG in the Device (
Section 9.6
on page 162
).
Use the
Address Mapping
screen to configure the Device's address mapping settings (
Section
9.7 on page 163
).
Use the
Sessions
screen to configure the Device's maximum number of NAT sessions (
Section
9.8 on page 165
).
9.1.2
What You Need To Know
Inside/Outside
Inside/outside denotes where a host is located relative to the Device, for example, the computers
of your subscribers are the inside hosts, while the web servers on the Internet are the outside
hosts.
Global/Local
Global/local denotes the IP address of a host in a packet as the packet traverses a router, for
example, the local address refers to the IP address of a host when the packet is in the local
network, while the global address refers to the IP address of the host when the same packet is
traveling in the WAN side.
Page 154 / 359
Chapter 9 Network Address Translation (NAT)
eircom F1000 Modem User’s Guide
154
NAT
In the simplest form, NAT changes the source IP address in a packet received from a subscriber
(the inside local address) to another (the inside global address) before forwarding the packet to the
WAN side. When the response comes back, NAT translates the destination address (the inside
global address) back to the inside local address before forwarding it to the original inside host.
Port Forwarding
A port forwarding set is a list of inside (behind NAT on the LAN) servers, for example, web or FTP,
that you can make visible to the outside world even though NAT makes your whole inside network
appear as a single computer to the outside world.
Finding Out More
See
Section 9.9 on page 165
for advanced technical information on NAT.
9.2
The Port Forwarding Screen
Use the
Port Forwarding
screen to forward incoming service requests to the server(s) on your
local network.
You may enter a single port number or a range of port numbers to be forwarded, and the local IP
address of the desired server. The port number identifies a service; for example, web service is on
port 80 and FTP on port 21. In some cases, such as for unknown services or where one server can
support more than one service (for example both FTP and web service), it might be better to
specify a range of port numbers. You can allocate a server IP address that corresponds to a port or
a range of ports.
The most often used port numbers and services are shown in
Appendix F on page 347
. Please refer
to RFC 1700 for further information about port numbers.
Note: Many residential broadband ISP accounts do not allow you to run any server
processes (such as a Web or FTP server) from your location. Your ISP may
periodically check for servers and may suspend your account if it discovers any
active services at your location. If you are unsure, refer to your ISP.
Configuring Servers Behind Port Forwarding (Example)
Let's say you want to assign ports 21-25 to one FTP, Telnet and SMTP server (
A
in the example),
port 80 to another (
B
in the example) and assign a default server IP address of 192.168.1.35 to a
Page 155 / 359
Chapter 9 Network Address Translation (NAT)
eircom F1000 Modem User’s Guide
155
third (
C
in the example). You assign the LAN IP addresses and the ISP assigns the WAN IP address.
The NAT network appears as a single host on the Internet.
Figure 81
Multiple Servers Behind NAT Example
Click
Network Setting > NAT > Port Forwarding
to open the following screen.
See
Appendix F on page 347
for port numbers commonly used for particular services.
Figure 82
Network Setting > NAT > Port Forwarding
The following table describes the fields in this screen.
Table 54
Network Setting > NAT > Port Forwarding
LABEL
DESCRIPTION
Add new rule
Click this to add a new rule.
#
This is the index number of the entry.
Status
This field displays whether the NAT rule is active or not. A yellow bulb signifies that this rule
is active. A gray bulb signifies that this rule is not active.
Service Name
This shows the service’s name.
WAN Interface
This shows the WAN interface through which the service is forwarded.
WAN IP
This field displays the incoming packet’s destination IP address.
Server IP
Address
This is the server’s IP address.
Start Port
This is the first external port number that identifies a service.
End Port
This is the last external port number that identifies a service.
Translation
Start Port
This is the first internal port number that identifies a service.
Translation End
Port
This is the last internal port number that identifies a service.
A=192.168.1.33
D=192.168.1.36
C=192.168.1.3
B=192.168.1.34
WAN
LAN
192.168.1.1
IP Address assigned by ISP

Rate

3.5 / 5 based on 2 votes.

Bookmark Our Site

Press Ctrl + D to add this site to your favorites!

Share
Top