Page 116 / 118 Scroll up to view Page 111 - 115
Reference Manual for the NETGEAR ProSafe 802.11g Wireless Access Point WG102
14
Glossary
202-10064-02, June 2005
does not offer. With this feature, WPA provides roughly comparable security to VPN tunneling with WEP,
with the benefit of easier administration and use. This is similar to 802.1x support and requires a RADIUS
server in order to implement. The Wi-Fi Alliance will call this, 'WPA-Enterprise.'
One variation of WPA is called WPA Pre Shared Key or WPA-PSK for short - this provides an
authentication alternative to an expensive RADIUS server. WPA-PSK is a simplified but still powerful form
of WPA most suitable for home Wi-Fi networking. To use WPA-PSK, a person sets a static key or
"passphrase" as with WEP. But, using TKIP, WPA-PSK automatically changes the keys at a preset time
interval, making it much more difficult for hackers to find and exploit them. The Wi-Fi Alliance will call
this, 'WPA-Personal.'
Wi-Fi Protected Access and IEEE 802.11i Comparison
Wi-Fi Protected Access will be forward-compatible with the IEEE 802.11i security specification currently
under development by the IEEE. Wi-Fi Protected Access is a subset of the current 802.11i draft, taking
certain pieces of the 802.11i draft that are ready to bring to market today, such as its implementation of
802.1x and TKIP. These features can also be enabled on most existing Wi-Fi CERTIFIED products as a
software upgrade. The main pieces of the 802.11i draft that are not included in Wi-Fi Protected Access are
secure IBSS, secure fast handoff, secure de-authentication and disassociation, as well as enhanced
encryption protocols such as AES-CCMP. These features are either not yet ready for market or will require
hardware upgrades to implement.
Wi-Fi Protected Access for the Enterprise
Wi-Fi Protected Access effectively addresses the WLAN security requirements for the enterprise and
provides a strong encryption and authentication solution prior to the ratification of the IEEE 802.11i
standard. In an enterprise with IT resources, Wi-Fi Protected Access should be used in conjunction with an
authentication server such as RADIUS to provide centralized access control and management. With this
implementation in place, the need for add-on solutions such as VPNs may be eliminated, at least for the
express purpose of securing the wireless link in a network.
Wi-Fi Protected Access for Home/SOHO
In a home or Small Office/ Home Office (SOHO) environment, where there are no central authentication
servers or EAP framework, Wi-Fi Protected Access runs in a special home mode. This mode, also called
Pre-Shared Key (PSK), allows the use of manually-entered keys or passwords and is designed to be easy to
set up for the home user. All the home user needs to do is enter a password (also called a master key) in their
access point or home wireless gateway and each PC that is on the Wi-Fi wireless network. Wi-Fi Protected
Access takes over automatically from that point. First, the password allows only devices with a matching
password to join the network, which keeps out eavesdroppers and other unauthorized users. Second, the
password automatically kicks off the TKIP encryption process, described above.
Wi-Fi Protected Access for Public Access
The intrinsic encryption and authentication schemes defined in Wi-Fi Protected Access may also prove
useful for Wireless Internet Service Providers (WISPs) offering Wi-Fi public access in "hot spots" where
Page 117 / 118
Reference Manual for the NETGEAR ProSafe 802.11g Wireless Access Point WG102
Glossary
15
202-10064-02, June 2005
secure transmission and authentication is particularly important to users unknown to each other. The
authentication capability defined in the specification enables a secure access control mechanism for the
service providers and for mobile users not utilizing VPN connections.
Wi-Fi Protected Access in "Mixed Mode" Deployment
In a large network with many clients, a likely scenario is that access points will be upgraded before all the
Wi-Fi clients. Some access points may operate in a "mixed mode", which supports both clients running
Wi-Fi Protected Access and clients running original WEP security. While useful for transition, the net effect
of supporting both types of client devices is that security will operate at the less secure level (WEP),
common to all the devices. Therefore, organizations will benefit by accelerating the move to Wi-Fi Protected
Access for all Wi-Fi clients and access points.
WiMAX
An IEEE 802.16 Task Group that provides a specification for fixed broadband wireless access systems
employing a point-to-multipoint (PMP) architecture. Task Group 1 of IEEE 802.16 developed a
point-to-multipoint broadband wireless access standard for systems in the frequency range 10-66 GHz. The
standard covers both the Media Access Control (MAC) and the physical (PHY) layers. Ratification is
expected in second half of 2004.
Wireless Multimedia (WMM)
WMM (Wireless Multimedia) is a subset of the 802.11e standard. WMM allows wireless traffic to have a
range of priorities, depending on the kind of data. Time-dependent information, like video, audio, or voice
will have a higher priority than normal traffic. For WMM to function correctly, wireless clients must also
support WMM.
Wireless Networking
Wireless Networking refers to the infrastructure enabling the transmission of wireless signals. A network
ties things together and enables resource sharing.
WLAN (Wireless LAN)
Also referred to as LAN. A type of local-area network that uses wireless or high-frequency radio waves
rather than wires to communicate between nodes.
Page 118 / 118
Reference Manual for the NETGEAR ProSafe 802.11g Wireless Access Point WG102
16
Glossary
202-10064-02, June 2005

Rate

4.5 / 5 based on 2 votes.

Bookmark Our Site

Press Ctrl + D to add this site to your favorites!

Share
Top