Page 91 / 118 Scroll up to view Page 86 - 90
Reference Manual for the ME103 802.11b ProSafe Wireless Access Point
Network, Routing, Firewall, and Cabling Basics
C-9
August 2003
The ME103 Access Point also functions as a DHCP client when connecting to the ISP. The
firewall can automatically obtain an IP address, subnet mask, DNS server addresses, and a
gateway address if the ISP provides this information by DHCP.
Domain Name Server
Many of the resources on the Internet can be addressed by simple descriptive names such as
www.NETGEAR.com
. This addressing is very helpful at the application level, but the descriptive
name must be translated to an IP address in order for a user to actually contact the resource. Just as
a telephone directory maps names to phone numbers, or as an ARP table maps IP addresses to
MAC addresses, a domain name system (DNS) server maps descriptive names of network
resources to IP addresses.
When a PC accesses a resource by its descriptive name, it first contacts a DNS server to obtain the
IP address of the resource. The PC sends the desired message using the IP address. Many large
organizations, such as ISPs, maintain their own DNS servers and allow their customers to use the
servers to look up addresses.
Routing Protocols
Two protocols routers use extensively are:
Routing Information Protocol (RIP)
Address Resolution Protocol (ARP)
These two protocols are introduced below.
RIP
One of the protocols used by a router to build and maintain a picture of the network is RIP. Using
RIP, routers periodically update one another and check for changes to add to the routing table.
The ME103 Access Point supports both the older RIP-1 and the newer RIP-2 protocols. Among
other improvements, RIP-2 supports subnet and multicast protocols. RIP is not required for most
home applications.
Page 92 / 118
Reference Manual for the ME103 802.11b ProSafe Wireless Access Point
C-10
Network, Routing, Firewall, and Cabling Basics
August 2003
MAC Addresses and ARP
An IP address alone cannot be used to deliver data from one LAN device to another. To send data
between LAN devices, you must convert the IP address of the destination device to its media
access control address (MAC address). Each device on an Ethernet network has a unique MAC
address, which is a 48-bit number assigned to each device by the manufacturer. The technique that
associates the IP address with a MAC address is known as address resolution. Internet Protocol
uses the ARP to resolve MAC addresses.
If a device sends data to another station on the network and the destination MAC address is not yet
recorded, ARP is used. An ARP request is broadcast onto the network. All stations on the network
receive and read the request. The destination IP address for the chosen station is included as part of
the message so that only the station with this IP address responds to the ARP request. All other
stations discard the request.
The station with the correct IP address responds with its own MAC address directly to the sending
device. The receiving station provides the transmitting station with the required destination MAC
address. The IP address data and MAC address data for each station are held in an ARP table. The
next time data is sent, the address can be obtained from the address information in the table.
For more information about address assignment, refer to the IETF documents RFC 1597,
Address
Allocation for Private Internets,
and RFC 1466,
Guidelines for Management of IP Address Space
.
Internet Security and Firewalls
When your LAN connects to the Internet through a router, an opportunity is created for outsiders
to access or disrupt your network. A NAT router provides some protection because by the very
nature of the process, the network behind the router is shielded from access by outsiders on the
Internet. However, there are methods by which a determined hacker can possibly obtain
information about your network or at the least can disrupt your Internet access. A greater degree of
protection is provided by a firewall router.
Page 93 / 118
Reference Manual for the ME103 802.11b ProSafe Wireless Access Point
Network, Routing, Firewall, and Cabling Basics
C-11
August 2003
What is a Firewall?
A firewall is a device that protects one network from another, while allowing communication
between the two. A firewall incorporates the functions of the NAT router, while adding features for
dealing with a hacker intrusion or attack. Several known types of intrusion or attack can be
recognized when they occur. When an incident is detected, the firewall can log details of the
attempt, and can optionally send email to an administrator notifying them of the incident. Using
information from the log, the administrator can take action with the ISP of the hacker. In some
types of intrusions, the firewall can fend off the hacker by discarding all further packets from the
hacker’s IP address for a period of time.
Stateful Packet Inspection
Unlike simple Internet sharing routers, a firewall uses a process called stateful packet inspection to
ensure secure firewall filtering to protect your network from attacks and intrusions. Since
user-level applications such as FTP and Web browsers can create complex patterns of network
traffic, it is necessary for the firewall to analyze groups of network connection states. Using
Stateful Packet Inspection, an incoming packet is intercepted at the network layer and then
analyzed for state-related information associated with all network connections. A central cache
within the firewall keeps track of the state information associated with all network connections.
All traffic passing through the firewall is analyzed against the state of these connections in order to
determine whether or not it will be allowed to pass through or rejected.
Denial of Service Attack
A hacker may be able to prevent your network from operating or communicating by launching a
Denial of Service (DoS) attack. The method used for such an attack can be as simple as merely
flooding your site with more requests than it can handle. A more sophisticated attack may attempt
to exploit some weakness in the operating system used by your router or gateway. Some operating
systems can be disrupted by simply sending a packet with incorrect length information.
Page 94 / 118
Reference Manual for the ME103 802.11b ProSafe Wireless Access Point
C-12
Network, Routing, Firewall, and Cabling Basics
August 2003
Ethernet Cabling
Although Ethernet networks originally used thick or thin coaxial cable, most installations currently
use unshielded twisted pair (UTP) cabling. The UTP cable contains eight conductors, arranged in
four twisted pairs, and terminated with an RJ45 type connector. A normal straight-through UTP
Ethernet cable follows the EIA568B standard wiring and pinout as described in
Table 6-1
.
Uplink Switches, Crossover Cables, and MDI/MDIX Switching
In the wiring table above, the concept of transmit and receive are from the perspective of the PC,
which is wired as Media Dependant Interface (MDI). In this wiring, the PC transmits on pins 1 and
2. At the hub, the perspective is reversed, and the hub receives on pins 1 and 2. This wiring is
referred to as Media Dependant Interface - Crossover (MDI-X).
When connecting a PC to a PC, or a hub port to another hub port, the transmit pair must be
exchanged with the receive pair. This exchange is done by one of two mechanisms. Most hubs
provide an Uplink switch which will exchange the pairs on one port, allowing that port to be
connected to another hub using a normal Ethernet cable. The second method is to use a crossover
cable, which is a special cable in which the transmit and receive pairs are exchanged at one of the
two cable connectors. Crossover cables are often unmarked as such, and must be identified by
comparing the two connectors. Since the cable connectors are clear plastic, it is easy to place them
side by side and view the order of the wire colors on each. On a straight-through cable, the color
order will be the same on both connectors. On a crossover cable, the orange and blue pairs will be
exchanged from one connector to the other.
Table 6-1.
UTP Ethernet cable wiring, straight-through
Pin
Wire color
Signal
1
Orange/White
Transmit (Tx) +
2
Orange
Transmit (Tx) -
3
Green/White
Receive (Rx) +
4
Blue
5
Blue/White
6
Green
Receive (Rx) -
7
Brown/White
8
Brown
Page 95 / 118
Reference Manual for the ME103 802.11b ProSafe Wireless Access Point
Network, Routing, Firewall, and Cabling Basics
C-13
August 2003
The ME103 Access Point incorporates Auto Uplink
TM
technology (also called MDI/MDIX). The
Ethernet port will automatically sense whether the Ethernet cable plugged into the port should
have a normal connection (e.g. connecting to a PC) or an uplink connection (e.g. connecting to a
router, switch, or hub). That port will then configure itself to the correct configuration. This feature
also eliminates the need to worry about crossover cables, as Auto Uplink
TM
will accommodate
either type of cable to make the right connection.
Cable Quality
A twisted pair Ethernet network operating at 10 Mbits/second (10BASE-T) will often tolerate low
quality cables, but at 100 Mbits/second (10BASE-Tx) the cable must be rated as Category 5, or
Cat 5 or Cat V, by the Electronic Industry Association (EIA). This rating will be printed on the
cable jacket. A Category 5 cable will meet specified requirements regarding loss and crosstalk. In
addition, there are restrictions on maximum cable length for both 10 and 100 Mbits/second
networks.

Rate

4.5 / 5 based on 2 votes.

Bookmark Our Site

Press Ctrl + D to add this site to your favorites!

Share
Top